Ensuring Access to Innovative Therapies:

Discovery to Approved Product

September 28, 2012

Access to Innovative Therapies

- Discovery: Identifying the commercial need for novel compounds
- Developing & registering a marketable novel product
- Case example: Improvest
- Conclusion the innovation paradox

Commercial Need for Novel Compounds

- The business of pioneer pharmaceutical companies is to identify medical needs that can be treated with novel compounds
- ...then develop novel products from those compounds and demonstrate safety, efficacy, and product quality for the intended uses
- Return on R&D investment depends on:
 - Novelty
 - "Patentability"
 - Value in the marketplace

Commercial Need for Novel Compounds

Identifying Medical Needs

- What are the drivers for discovery of novel agents?
 - User needs (convenience, compliance, cures, cost)
 - Resistance to existing therapies
 - Regulatory framework
 - Consumer acceptance
- Predict the market's needs 8–12 years ahead!

AH Substrate Being Expanded to Include Novel Compounds

- Substantial decrease in human health antibiotics programs
 - Human health more focused on chronic use drugs / conditions
 - Less available substrate for leveraging
- Where can animal health antibiotics programs look for new substrate?
 - Traditional Small Molecules
 - Novel Antibacterial Classes
 - Re-exploration of older generations of existing classes
 - Novel Substrate
 - Antimicrobial peptides
 - Bacteriophages
 - Probiotics

Getting Novel Compounds to the Marketplace

Developing Novel Products

- Commercial accessibility of novel compounds depends on
 - Successful new molecule discovery
 - Advancement of the drug candidate through clinical development
 - Formulation and chemistry
 - Validation of a commercial-scale manufacturing process
 - Efficient regulatory review and final approval by the regulatory agency
 - Timely access to the market to meet the needs, by expedient market launch

Human and Animal Health R&D Processes

Animal Health Discovery

Getting Novel Compounds to the Marketplace: The Discovery Process

Begins with a Target Profile

- Label Claim (treatment of X disease caused by X organisms)
- Market differentiators (single dose, oral, etc.)
 - Requires knowledge of current and future market conditions
- Market value

Key Points

- Investment is made at risk
- Timeline for process is 8–12 years

Getting Novel Compounds to the Marketplace: The Discovery Process

Preclinical Development Programs Identify Candidate Compounds

- Desirable efficacy including optimal ADME and PK parameters
- Favourable Animal Safety
- Demonstrable Human Food Safety
- Convenience of delivery system
- Positive Cost: Benefit ratio for the end-user

Getting Novel Compounds to the Marketplace: The Development Process

- Proof of efficacy: often not the rate-limiting step
- Greatest determining factors:
 - animal safety
 - method of delivery
 - economics
- Innovation can complicate
 PK / PD interpretation, may require new models
- Food animal compounds
 - Complexity increases for food safety assessment
 - this increases development time and cost

Getting Novel Compounds to the Marketplace: Manufacturing

Manufacturing

- Ability to manufacture the product at sufficient scale is key to the commercial viability of the product
- COG calculations are critical to moving ahead
- GMP requirements and manufacturing facility restrictions can block the transition to full-scale production
- Oversight may vary by regulatory jurisdiction, making it difficult to align globally in GMP vs. non-GMP environments

Getting Novel Compounds to the Marketplace: Regulatory

Novel Anti-infectives Must Meet the Regulatory Requirements of Traditional Small Molecules

Courtesy City of Ottawa

Getting Novel Compounds to the Marketplace: Regulatory

Drug Substance

√General Information

Nomenclature

Chemical Structure

Physicochemical Properties

- ✓ Method of Manufacture
- √ Structure Elucidation and Confirmation
- ✓ Impurities
- ✓ Control of the Drug Substance
- ✓ Reference Standards
- ✓ Packaging
- √ Stability

Drug Product

- √ Pharmaceutical Development
- ✓ Method of Manufacture
- ✓ Manufacturer(s)
- ✓ Formulae
- ✓ Quantitative formula
- √ Batch formula
- √ Manufacturing Process

Process Validation

Control of Excipients

Control of the drug product

- ✓ Packaging
- √ Stability

Accelerated & Long Term Studies

Proposed storage & shelf life

Getting Novel Compounds to the Marketplace: Regulatory

Efficacy

- ✓ Microbiology
- ✓ Laboratory in-vitro
- ✓ Animal Model Efficacy
- √ Clinical Pharmacology
- √ Pharmacokinetics
- ✓ Bioavailability
- ✓ Pharmacodynamics
- ✓ Dose determination optimum dose & challenge
- ✓ Dose confirmation pivotal clinical

Animal Safety

Laboratory Animal Studies

- ✓ Acute Toxicity
- √Sub-chronic Toxicity
- √ Chronic Toxicity
- ✓ Irritation
- ✓ Reproduction & Teratogenicity

Target Animal Safety Studies

- ✓ Margin-of-Safety
- ✓ Proposed Conditions of Use
- √ Tissue Irritation
- ✓ Reproductive Function
- √Clinical Safety
- √ Pharmacovigilance Data

Getting Novel Compounds to the Marketplace: Regulatory

Human Food Safety

✓ Laboratory Animal Studies

Acute, sub-chronic, chronic toxicity

Carcinogenicity, teratogenicity

Multigeneration reproductive

Genotoxicity

Pharmacological

Immunotoxicity, Neurotoxicity

- ✓ Pharmacokinetics & Metabolism
- ✓ Residue detection & depletion
- **✓NOEL & ADI**
- ✓MRL & withdrawal period

Microbial Safety

- ✓ Resistance mechanism
- √Transfer of resistance genes
- √Cross-resistance
- √Co-resistance
- √ Resistance development
- ✓ Animal Gut Effect
- ✓ Human Gut Effect
- ✓Impact on Human Medicine

Getting Novel Compounds to the Marketplace

Intellectual Property Protection

- Patent lifecycle is critical to return on R&D investment
- Maximization of IP protection hinges on efficient development, predictable regulatory review, and expedient access to the market

Conclusion: The Innovation Paradox

- Antibiotics are the only product category where increased use theoretically promotes more rapid obsolescence
- Contrary to popular belief, veterinarians don't have that many options for treating diseases
- Responsibly developing new antibiotics and alternatives to antimicrobials is important to both human and animal health and the regulatory pathway needs to remain predictable, transparent and science based
- Otherwise, Industry will invest R&D in other areas with the consequence that veterinarians will have even fewer treatment options available in the future – compromising our one health

Thank You!

